2024年度 H27年度以前入学者向け 理学部 数学科
集合と位相演習
- 開講元
- 数学科
- 担当教員
- 山田 光太郎 / 中村 聡
- 授業形態
- 演習 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 火5-8 (M-B104(H103)) / 火7-10 (M-B104(H103))
- クラス
- -
- 科目コード
- ZUA.B202
- 単位数
- 020
- 開講時期
- 2024年度
- 開講クォーター
- 1~2Q
- シラバス更新日
- 2025年3月17日
- 使用言語
- 日本語
シラバス
授業の目的(ねらい)、概要
本科目は「集合と位相第一(ZUA.B201)」の演習である。「集合と位相第一」で扱われる講義の内容について、問題演習を行う。
到達目標
・ド・モルガンの法則を自由に使えるようになること
・与えられた写像が全射になるか、単射になるか、全単射になるか判定できるようになること
・与えられた写像の像と逆像を求められるようになること。
・同値関係と商集合の具体例を扱えるようになること
・連続の濃度と可算の濃度の違いを理解すること
・全順序と半順序の違いを理解すること
・整列集合の持つ強い性質を理解すること
・ツォルンの補題のいくつかの応用を理解すること
・整列可能定理、ツォルンの補題、選択可能公理の同値性を理解すること
・ユークリッド空間と距離空間における基本的な性質を理解すること
キーワード
集合、写像、像と逆像、直積集合、二項関係、同値関係、商集合、集合の濃度、可算濃度と非可算濃度
順序集合、全順序と半順序、整列集合、ツォルンの補題、選択公理、整列可能定理、ユークリッド空間、距離空間、連続写像
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
「集合と位相第一」で解説した内容に関する問題演習
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 以下の内容に関する問題演習:集合の定義、例、和集合、共通部分、部分集合、補集合 | 講義中に指示する |
第2回 | 以下の内容に関する問題演習:ド・モルガンの法則、分配法則、集合の間の写像 | 講義中に指示する |
第3回 | 以下の内容に関する問題演習:像と逆像、写像の合成、直積集合 | 講義中に指示する |
第4回 | 以下の内容に関する問題演習:集合の間の対応、添え字づけられた集合族 | 講義中に指示する |
第5回 | 以下の内容に関する問題演習:二項関係、同値関係、同値類、商集合 | 講義中に指示する |
第6回 | 以下の内容に関する問題演習:集合の濃度、濃度の大小関係、可算集合 | 講義中に指示する |
第7回 | 以下の内容に関する問題演習:連続の濃度、非可算集合、巾集合の濃度 | 講義中に指示する |
第8回 | 以下の内容に関する問題演習:順序関係、全順序、整列集合、整列集合に関する基本性質 | 講義中に指示する |
第9回 | 以下の内容に関する問題演習:帰納的順序集合、ツォルンの補題 | 講義中に指示する |
第10回 | 以下の内容に関する問題演習:順序数、濃度の比較定理 | 講義中に指示する |
第11回 | 以下の内容に関する問題演習:整列可能定理、整列可能定理と選択公理の同値性 | 講義中に指示する |
第12回 | 以下の内容に関する問題演習:ツォルンの補題の応用例 | 講義中に指示する |
第13回 | 以下の内容に関する問題演習:ユークリッド空間、距離空間、開集合と閉集合 | 講義中に指示する |
第14回 | 以下の内容に関する問題演習:距離空間における基本的概念 | 講義中に指示する |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
梅原雅顕・一木俊助「これからの集合と位相」裳華房 2021
参考書、講義資料等
内田伏一「集合と位相(増補新装版)」裳華房 2020
成績評価の方法及び基準
最初の授業時間に説明する.
関連する科目
- ZUA.B201 : 集合と位相第一
- MTH.B201 : 位相空間論第一
- MTH.B202 : 位相空間論第二
履修の条件・注意事項
微分積分学第一・演習、微分積分学第二、同演習、線形代数学第一・演習、線形代数学第二、同演習を履修済みであることが望ましい。
「集合と位相第一」を同時に履修することが強く推奨される(未履修の場合)