2023年度 学院等開講科目 情報理工学院 専門科目
応用AI・データサイエンスC 2
- 開講元
- 専門科目
- 担当教員
- 新田 克己 / 富井 規雄 / 宮﨑 慧 / 奥村 圭司 / 佐久間 淳 / 三宅 美博 / 小野 功 / 金﨑 朝子 / 小林 隆夫 / 瀧川 孝幸 / SCOTT LUPTON / Lu Yong / YULIN ZHUANG / FERNANDO DE ARAUJO PAULO / YONG LU / 岩屋 竜志 / Mendieta Erick / Le Hoa
- 授業形態
- 講義 (ライブ型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 水7-8
- クラス
- 2
- 科目コード
- XCO.T485
- 単位数
- 100
- 開講時期
- 2023年度
- 開講クォーター
- 1Q
- シラバス更新日
- 2025年7月8日
- 使用言語
- 英語
シラバス
授業の目的(ねらい)、概要
この授業科目は人工知能とデータサイエンスにおける社会実装の最前線を学ぶことを目標としている。
ITサービス、金融業界、製薬業界の最前線で必要とされる技術の大枠を理解した上で、人工知能とデータサイエンスを活用する可能性について考察できるようデザインされている。2つのクラス(クラス1:日本語開講、クラス2:英語開講)で実施され、授業計画に示すとおり各回の授業において、企業の講師によりそれぞれのトピックに関する全体像と最近の動向が解説される。
到達目標
この授業科目は、人工知能とデータサイエンスの社会実装に関する理解を深め、受講生が実社会において活躍する能力を高めることを目標にしている。
実務経験のある教員等による授業科目等
実務経験と講義内容との関連 (又は実践的教育内容)
この授業科目はクラス1では株式会社リクルートと野村ホールディングス株式会社の講師により、クラス2では野村ホールディングス株式会社と楽天グループ株式会社と第一三共株式会社の講師により、実務経験に基づいて課題解決の技法を講義していただく
キーワード
人工知能、データサイエンス、機械学習、資産運用、電子商取引、臨床開発
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
この授業科目では、学生自らが能動的に学ぶことを重視します。各回の講義には必ず出席してください。
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 金融分野におけるAIとデータサイエンス(1) | 金融企業におけるAIとデータサイエンスの事例を理解する |
第2回 | 金融分野におけるAIとデータサイエンス(2) | 金融企業におけるAIとデータサイエンスの事例を理解する |
第3回 | 大規模な Web サービスを構築するためのヒントとコツ | • Webのスケーラビリティに関するキー概念 • インターネットビジネスのトレンド • 分散アーキテクチャの共通専門用語 • 生長のダイナミクス • スケーラブルな設計:高トラフィックと分散データ • 生長のための組織をどのように用意するか |
第4回 | データサイエンスとUX/UI設計 | 1)データサイエンスがUX (Web解析)でどのように使われるのかアイデアを得る。 2)実際のビジネスケースを通して、UXのアプローチとデータサイエンスが互いに支援するかを知る。 3) 実際のビジネスケースを通して、最先端の技術にUIがどのくらい重要かを知る。 4) 上記の新しい知識とアイデアを用いて、自分の学習分野の理解を拡げ、深め、社会実装における潜在的な問題を想像する。 |
第5回 | 研究から製造までのAIの革新からの教訓 | - 複雑なAIプロジェクトを製品に移行させるために必要なことを学生に示す。 - 共通の挑戦課題とAIプロジェクトが失敗しうるさまざまな原因を共有する。 - 成功事例を生徒と共有する |
第6回 | 臨床試験でのデータ分析の適用 | データ分析は、製薬業界におけるデータサイエンスの機能を強化する最近の傾向となっています。業界アプリケーションをサポートするコンセプト、業界のニーズ、および利用可能な技術について説明する。 |
第7回 | 臨床開発におけるリアルワールド・エビデンスの活用の機会と課題 | RWD(リアルワールドデータ)は、製薬業界において製品の研究開発に広く利用されている。RWDのソース、リアルワールドエビデンス(RWE)、傾向スコアやAI/MLなどの高度な手法、臨床試験デザインへの情報提供や単一群臨床試験における規制上の意思決定を支援する外部コントロールアームとしての応用例などについて議論する。 |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,配布資料の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
指定しない
参考書、講義資料等
講義資料は事前にT2SCHOLAに掲載し、Zoom画面でも共有する。
成績評価の方法及び基準
期末試験は実施しない。毎回の課題レポートにより評価する。
関連する科目
- XCO.T487 : 基盤データサイエンス
- XCO.T488 : 基盤データサイエンス演習
- XCO.T489 : 基盤人工知能
- XCO.T490 : 基盤人工知能演習
- XCO.T483 : 応用AI・データサイエンスA
- XCO.T486 : 応用AI・データサイエンスD
履修の条件・注意事項
博士後期課程の方はXCO.T689-2「応用AI・データサイエンス発展C-2」を受講してください。
連絡先 (メール、電話番号) ※”[at]”を”@”(半角)に変換してください。
新田克己 nitta.k.aa[at]m.titech.ac.jp
金崎朝子 kanezaki[at]c.titech.ac.jp
オフィスアワー
メールで事前予約すること。