2023年度 学院等開講科目 工学院 機械系
確率・統計
- 開講元
- 機械系
- 担当教員
- 阪口 基己
- 授業形態
- 講義 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 金1-2 (M-178(H1101))
- クラス
- -
- 科目コード
- MEC.B231
- 単位数
- 100
- 開講時期
- 2023年度
- 開講クォーター
- 4Q
- シラバス更新日
- 2025年7月8日
- 使用言語
- 日本語
シラバス
授業の目的(ねらい)、概要
この講義では,基本的な確率の復習から始まり,代表的な確率分布と統計量について学んだあと,母数の推定と検定を用いて母集団の特性を説明できるように講義が行われます。
機械工学に関連する諸問題を解決し,機械工学を発展させるためには,様々な数学の基礎知識が必要となります。確率と統計は,以後履修する機械系の様々な講義の履修に際して重要になるのみならず,特にビッグデータを扱う現代において,卒業後の研究,開発,生産等におけるデータの処理と評価に必要不可欠な知識です。積極的に履修されることを期待しています。
到達目標
本講義では,以下のように,確率・統計における基礎項目を理解し,代表的な機械工学の問題に応用できることを到達目標とします.
1)代表的な標本統計量と確率密度分布を説明することができる
2)標本から推定・検定によって母数を予測することができる
3)統計学の手法を用いて母集団の特性を説明することができる。
この科目は,学修目標の
6.機械工学の発展的専門学力
7.専門知識を活用して新たな課題解決と創造的提案を行う能力
の修得に対応する.
キーワード
平均,分散,標本,母数,二項分布,ポアソン分布,正規分布,確率密度,最尤推定,区間推定法
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
授業は講義形式で行われます。各回の課題を予習・復習して下さい。
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | はじめに;事象、確率 | データと標本空間,事象および確率の定義,ベイズの定理の理解 |
第2回 | 確率変数と確率分布 | 確率変数,確率分布,確率密度関数の定義の理解 |
第3回 | 確率分布、平均・分散、中心極限定理 | 平均・分散とモーメント母関数,正規分布,中心極限定理の理解 |
第4回 | 様々な確率分布 | 二項分布,ポアソン分布,正規分布等代表的な確率分布の理解 |
第5回 | 標本、統計量、標本分布 | 標本と母集団,標本統計量と母数,χ2分布,t分布の理解 |
第6回 | 推定 | 最尤推定,区間推定法 |
第7回 | 検定 | 統計的検定と検定に用いる統計量の理解 |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
必要に応じて資料を配布
参考書、講義資料等
Robert S. Witte, John S. Witte, "Statistics", Hoboken : John Wiley and Sons, Inc., (2015)
成績評価の方法及び基準
授業中の小テスト(30%)と期末試験(70%)によって成績評価する。期末試験は対面で行う。
関連する科目
- MEC.B211 : 常微分方程式
- MEC.B213 : 偏微分方程式
- MEC.B212 : 複素関数論
- MEC.B214 : ベクトル解析
- MEC.B232 : 基礎数値計算法
履修の条件・注意事項
微分積分学第一・演習(LAS.M101),微分積分学第二(LAS.M105)を履修していること,または同等の知識があることが望ましい。