トップページへ

2023年度 H27年度以前入学者向け 理学部 数学科

代数学特別講義A

開講元
数学科
担当教員
下元 数馬
授業形態
講義 (対面型)
メディア利用科目
-
曜日・時限
(講義室)
木5-6 (M-101(H116))
クラス
-
科目コード
ZUA.A331
単位数
100
開講時期
2023年度
開講クォーター
1Q
シラバス更新日
2025年7月8日
使用言語
英語

シラバス

授業の目的(ねらい)、概要

この講義では、可換環論の現代理論と応用を学ぶ事を目標とする。代数幾何学や整数論の土台としての役割に留まらず、可換環論は最先端の数学において欠かせない知識となりつつある。最先端の論文を読みこなすために欠かせない、局所コホモロジー論、正則列、Cohen-Macaulay環などについて解説する。また概念の背景にある幾何学的な意味を意識しながら講義を進める。

到達目標

1 局所コホモロジーと正則列の関係について理解する。
2 局所コホモロジーの計算方法。
3 局所コホモロジーとCohen-Macaulay環との関係について理解する。
4 Cohen-Macaulay環の具体例

キーワード

入射加群、射影加群、正則列、局所コホモロジー、Cohen-Macaulay環

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

通常の講義形式で行う。

授業計画・課題

授業計画 課題
第1回 以下の内容について講義する。 (1) 入射加群と入射分解 (2) Ext加群と正則列 (3) 局所コホモロジーの定義 (4) 局所コホモロジーとCohen-Macaulay環 (5) Gorenstein環 (6) 消滅定理と局所双対定理 (7) 局所コホモロジーの代数幾何への応用 レポート問題を授業中に出す。

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね 30分を目安に行うこと。

教科書

指定しない。

参考書、講義資料等

「Cohen-Macaulay Rings」:W.Bruns and J.Herzog
「Commutative Ring Theory」:H. Matsumura
「Introduction to Commutative Algebra and Algebraic Geometry」:E. kunz

成績評価の方法及び基準

レポート課題の評価による。

関連する科目

  • MTH.A201 : 代数学概論第一
  • MTH.A202 : 代数学概論第二
  • MTH.A301 : 代数学第一
  • MTH.A302 : 代数学第二

履修の条件・注意事項

学部で習得する代数学を学んでおくと望ましい。