トップページへ

2023年度 学院等開講科目 理学院 数学系 数学コース

解析学特論D1

開講元
数学コース
担当教員
田辺 正晴
授業形態
講義 (対面型)
メディア利用科目
-
曜日・時限
(講義室)
金3-4 (M-102(H115))
クラス
-
科目コード
MTH.C408
単位数
100
開講時期
2023年度
開講クォーター
4Q
シラバス更新日
2025年7月8日
使用言語
英語

シラバス

授業の目的(ねらい)、概要

本講義は3Q「解析学特論C1」の続きである。リーマン面とは、実2次元の多様体でありかつ座標変換が正則写像で与えられるもののことである。等角同値なリーマン面の類全体から成る集合に、幾何学的な構造を与えたものをモジュライ空間という。タイヒミュラー空間は、モジュライ空間の普遍被覆であり各点は標識付けられたリーマン面の同値類から成っている。Ahlforsはタイヒミュラー空間に初めて複素構造を導入した。本講義ではAhlforsの手法を見て行く。そのために、擬等角写像、タイヒミュラーの定理等について扱う。

到達目標

擬等角写像の扱いを身につける。
タイヒミュラーの定理について理解する。
タイヒミュラー空間に複素構造を導入したAhlforsの手法を理解する。

キーワード

リーマン面、モジュライ空間、タイヒミュラー空間

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

通常の講義形式で行う。

授業計画・課題

授業計画 課題
第1回 タイヒミュラー空間 講義中に指示する
第2回 擬等角写像 講義中に指示する
第3回 タイヒミュラー距離 講義中に指示する
第4回 タイヒミュラーモジュラー群 講義中に指示する
第5回 正則二次微分 講義中に指示する
第6回 タイヒミュラーの定理 講義中に指示する
第7回 Ahlforsの手法 講義中に指示する

準備学修(事前学修・復習)等についての指示

学修効果を上げるため、「毎授業」授業内容に関する復習(課題含む)を、概ね100分を目安に行うこと。

教科書

なし

参考書、講義資料等

H. M. Farkas and I. Kra, Riemann surfaces, GTM 71, Springer-Verlag
今吉洋一、谷口雅彦、タイヒミュラー空間論、日本評論社
L. V. Ahlfors, The complex analytic structure of the space of closed Riemann surfaces. In Rolf Nevanlinna et. al., editor, Analytic Functions, pages 45-66. Princeton University Press, 1960.

成績評価の方法及び基準

レポート(100%)

関連する科目

  • MTH.C407 : 解析学特論C1

履修の条件・注意事項

解析学特論C1の内容を理解していること。